582 research outputs found

    Longitudinal and transverse noise in a moving Vortex Lattice

    Full text link
    We have studied the longitudinal and the transverse velocity fluctuations of a moving vortex lattice (VL) driven by a transport current. They exhibit both the same broad spectrum and the same order of magnitude. These two components are insensitive to the velocity and to a small bulk perturbation. This means that no bulk averaging over the disorder and no VL crystallization are observed. This is consistently explained referring to a previously proposed noisy flow of surface current whose elementary fluctuator is measured isotropic.Comment: accepted for publication in Phys Rev

    The thermoelectric working fluid: thermodynamics and transport

    Get PDF
    Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal-phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims to contribute to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.Comment: 15 pages, 2 figure

    Generation of internal gravity waves by penetrative convection

    Full text link
    The rich harvest of seismic observations over the past decade provides evidence of angular momentum redistribution in stellar interiors that is not reproduced by current evolution codes. In this context, transport by internal gravity waves can play a role and could explain discrepancies between theory and observations. The efficiency of the transport of angular momentum by waves depends on their driving mechanism. While excitation by turbulence throughout the convective zone has already been investigated, we know that penetrative convection into the stably stratified radiative zone can also generate internal gravity waves. Therefore, we aim at developing a semianalytical model to estimate the generation of IGW by penetrative plumes below an upper convective envelope. We derive the wave amplitude considering the pressure exerted by an ensemble of plumes on the interface between the radiative and convective zones as source term in the equation of momentum. We consider the effect of a thermal transition from a convective gradient to a radiative one on the transmission of the wave into the radiative zone. The plume-induced wave energy flux at the top of the radiative zone is computed for a solar model and is compared to the turbulence-induced one. We show that, for the solar case, penetrative convection generates waves more efficiently than turbulence and that plume-induced waves can modify the internal rotation rate on shorter time scales. We also show that a smooth thermal transition significatively enhances the wave transmission compared to the case of a steep transition. We conclude that driving by penetrative convection must be taken into account as much as turbulence-induced waves for the transport of internal angular momentum.Comment: Accepted for publication in A&A, 21 page

    The role of rotation on Petersen Diagrams. The Pi1/0(Omega) Pi_{1/0}(Omega) period ratios

    Full text link
    The present work explores the theoretical effects of rotation in calculating the period ratios of double-mode radial pulsating stars with special emphasis on high-amplitude delta Scuti stars (HADS). Diagrams showing these period ratios vs. periods of the fundamental radial mode have been employed as a good tracer of non-solar metallicities and are known as Petersen diagrams (PD).In this paper we consider the effect of moderate rotation on both evolutionary models and oscillation frequencies and we show that such effects cannot be completely neglected as it has been done until now. In particular it is found that even for low-to-moderate rotational velocities (15-50 km/s), differences in period ratios of some hundredths can be found. The main consequence is therefore the confusion scenario generated when trying to fit the metallicity of a given star using this diagram without a previous knowledge of its rotational velocity.Comment: A&A in pres

    On the interpretation of echelle diagrams for solar-like oscillations. Effect of centrifugal distortion

    Full text link
    This work aims at determining the impact of slow to moderate rotation on the regular patterns often present in solar-like oscillation spectra. We focus on the well-known asteroseismic diagnostic echelle diagrams, examining how rotation may modify the estimates of the large and small spacings, as well as the identification of modes. We illustrate the work with a real case: the solar-like star η\eta Bootis. The modeling takes into account rotation effects on the equilibrium models through an effective gravity and on the oscillation frequencies through both perturbative and non-perturbative calculations. We compare the results of both type of calculations in the context of the regular spacings (like the small spacings and the scaled small spacings) and echelle diagrams. We show that for echelle diagrams the perturbative approach remains valid for rotational velocities up to 40-50 km/s. We show that for the rotational velocities measured in solar-like stars, theoretical oscillation frequencies must be corrected up to the second-order in terms of rotation rate, including near degeneracy effects. For rotational velocities of about 16 km/S and higher, diagnostics on large spacings and on modal identification through echelle diagrams can be significantly altered by the presence of the m≠0m\neq0 components of the rotationally split modes. We found these effects to be detectable in the observed frequency range. Analysis of the effects of rotation on small spacings and scaled small spacings reveals that these can be of the order of, or even larger than surface effects, typically turbulence, microscopic diffusion, etc. Furthermore, we show that scaled spacings are significantly affected by stellar distortion even for small stellar rotational velocities (from 10-15 km/s) and therefore some care must be taken when using them as indicators for probing deep stellar interiors.Comment: 10 pages,5 figures, accepted for publication in ApJ; http://iopscience.iop.org/0004-637X/721/1/537
    • …
    corecore